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Abstract 

Techniques to identify aircraft aerodynamic characteristics from flight measurements and 
compute corrections to an existing simulation model of a research aircraft were investigated. 
The purpose of the research was to develop a process enabling rapid automated updating of 
aircraft simulation models using flight data and apply this capability to all flight regimes, 
including flight envelope extremes. The process presented has the potential to improve the 
efficiency of envelope expansion flight testing, revision of control system properties, and the 
development of high-fidelity simulators for pilot training. 
 
Keywords:  Aerodynamics, Parameter Estimation, Aircraft Modelling and Simulation 
 

Introduction 

The National Aeronautics and Space Administration Langley Research Center (NASA LaRC) 
is participating in a broad research initiative looking into aviation safety for civilian transport 
aircraft operations. Investigating safety issues when operating near or at the extremes of the 
flight envelope is an element of this research, with a special interest in those conditions 
leading to departure from controlled flight.  

Examining the flight characteristics of transport aircraft near the extremes of the flight 
envelope is challenging due to the logistics, cost, and risk associated with flight testing full-
scale transport aircraft. Accurate aerodynamic data are required to predict and simulate the 
flight behaviour for pilot training and flight control system design while operating in this 
regime. Wind tunnel testing using scaled models can provide representative aerodynamic 
data. Computational Fluid Dynamics (CFD) methods may also be used to estimate 
aerodynamic data. However, the behaviour of the aircraft predicted using these data may not 
represent that in flight due to experimental and computational limitations. These data are 
typically used to form the basis of a mathematical representation of the aircraft that is 
improved using flight test measurements. 

NASA LaRC has constructed a dynamically-scaled model of a generic transport aircraft to 
collect flight data supporting research investigating full-scale transport aircraft behaviour 
[1,2]. Research has also been conducted investigating techniques to rapidly analyse flight 
measured data for updating aircraft simulation models [3,4,5,6,7]. Rapid parametric model 
estimation techniques are particularly valuable when investigating flight envelope extremes 
as they offer the potential to minimise dangerous flight testing while improving models 
derived from wind tunnel and CFD data sources. Additionally, NASA is contributing to the 
development of an aircraft simulation model data exchange standard [8] that provides a 
framework to simplify the exchange of aircraft models within the simulation user community. 
Combining the rapid parametric model estimation research with the data exchange standard 
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offers the potential to significantly improve the timeliness and efficiency of updating aircraft 
simulation models using flight data. 

This paper presents research on applying rapid simulation model adjustment techniques to the 
scale-model generic transport aircraft operated by NASA LaRC. Techniques to identify 
aircraft aerodynamic characteristics from flight measurements and efficiently apply 
corrections to an existing aircraft simulation model are included. 
 

The Generic Transport Model 

Overview 

NASA LaRC has constructed a number of scale-model aircraft representing commercial 
transport aircraft to support research investigating the behaviour of these aircraft operating at 
extreme flight conditions. The current research vehicle is known as the Generic Transport 
Model (GTM) T2, and is shown in Figure 1. 

 
Figure 1: NASA LaRC T2 scale-model Generic Transport Model 

The T2 aircraft has been scaled to represent the geometric proportions of a full-sized 
transport aircraft, as well as its mass properties, including the mass centre and moments of 
inertia. Consequently, the dynamics and response to controls for the scaled aircraft are 
representative of the full-sized vehicle when subjected to equivalent control stimuli. The T2 
aircraft has 16 control surfaces, all of which may be independently articulated. 

In flight test configuration, the T2 aircraft has a takeoff weight of 57 pounds. It is powered by 
two turbojet engines, and is fitted with an extensive flight test instrumentation suite. A 
detailed description of the aircraft and its construction is presented in [1,2,9]. 

Testing 

Wind tunnel test programmes of the T2 aircraft were carried out in both the NASA LaRC 
14 ft x 22 ft subsonic wind tunnel and the NASA LaRC 20-Foot Vertical Spin Tunnel 
facilities to gather aerodynamic data from which an initial simulation model was 
developed [10]. The simulation model was used for the design of flight system control laws 
and preparation of the flight test programme. 

The flight test programme of the T2 aircraft was designed to evaluate the vehicle behaviour 
in normal operational flight conditions, and in regions of the flight envelope traditionally 
considered outside normal operating conditions, together with researching adaptive control 
strategies for protecting against loss of control [11]. In particular, testing was conducted at 
angles of attack near and beyond normal stall flight conditions, and at high side-slip angles. 



AIAC14 Fourteenth Australian International Aerospace Congress 
 

14th Australian Aeronautical Conference 
(AIAC14-AERO) 

 

Data were gathered for estimating vehicle aerodynamics at these flight conditions. The 
aerodynamic data from flight test supplemented those from wind tunnel testing, and were 
used to improve the representation of the T2 aircraft simulation model, as well as providing 
insight into the propensity for the vehicle to depart from controlled flight. 

Pre-programmed control excitations were injected and summed with pilot control commands 
to exercise the vehicle motion in a desired manner, and the gathered data were analysed using 
parametric model estimation techniques to estimate aerodynamic characteristics. The control 
excitations took the form of optimized multi-axis orthogonal multi-sine sweeps [5,12]. These 
excitations permitted both the longitudinal and lateral aerodynamics to be estimated from the 
data gathered during a single manoeuvre. References [5] and [12] discuss the design of 
optimized multi-axis orthogonal multi-sine control excitations for aerodynamic parameter 
estimation, together with remarks on data correlation.  

Improvements in the efficiency of the data gathering and aerodynamic estimation activities 
were possible as a result of using optimized orthogonal multi-axis excitations. Furthermore, 
the coupling of these excitation techniques with the rapid flight data analysis techniques 
described in [3,5,6,7] provided a framework onto which rapid aircraft simulation model 
updating could be attached. 
 

The Flight Dynamics Model Exchange Standard 

The Modeling and Simulation Technical Committee (MSTC) of the American Institute of 
Astronautics and Aeronautics (AIAA) is developing a series of standards to facilitate the 
exchange of aircraft dynamics simulation models between aircraft simulation agencies and 
research establishments. One standard is for the exchange of aircraft characteristic data – 
BSR/AIAA S-119-2010 Flight Dynamics Model Exchange Standard [8], to which NASA and 
the Australian Defence Science and Technology Organisation (DSTO) are contributing. The 
standard defines procedures and formats for exchanging aircraft characteristics such as 
aerodynamic, propulsion, and mass property data. 

The objectification of this standard is the Dynamic Aerospace Vehicle Exchange Markup 
Language (DAVE-ML), which defines a syntactical language for encoding model data [13]. 
DAVE-ML employs a text-based format built upon the eXtensible Markup Language (XML) 
Version 1.1 [14], and Mathematical Markup Language (MathML) Version 2.0 open standards 
developed by the World Wide Web Consortium (W3C) [15]. It defines additional grammar to 
provide a domain-specific language for aerospace flight dynamics modelling, verification, 
and documentation. 

Data for the scale-model T2 aircraft were encoded using the DAVE-ML syntactical language 
and the Flight Dynamics Model Exchange Standard. Coupled with flight modelling software 
[12], a simulation capability was developed for predicting and verifying vehicle behaviour 
subsequent to changes to the existing simulation model using data derived from flight 
experiments. The DAVE-ML syntactical language was chosen for this task as it provided a 
framework simplifying the process of the updating the original characteristic data with 
increments utilising a mix of tabular data and equations. In addition, data uncertainty 
measures could be recorded in conjunction with the respective data, which were then 
available for subsequent use in simulation studies. 
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Simulation Model Updating 

Simulation models of aircraft are used for a variety of applications including flight behaviour 
prediction, performance analysis, flight control system design, and pilot training. They 
combine data defining vehicle characteristics such as the mass, aerodynamics, propulsion, 
and control systems properties. Accurate data for each of these is required to authentically 
represent vehicle dynamics and response to control stimuli. A change to aircraft 
configuration, and/or the availability of improved data for the various sub-systems 
necessitates updating of the simulation model to ensure its authenticity persists. In the context 
of this paper, simulation model updating refers to updating the aerodynamic representation of 
the aircraft using data gathered from flight testing.  

Aerodynamic Parameter Estimation 

Parametric estimation techniques have been developed for computing estimates of vehicle 
aerodynamics from flight data [3,4,12,16]. These are often a process of estimating a 
mathematical representation of the aerodynamic characteristics related to a flight condition. 
Analysis techniques are available for applying parameter estimation techniques in both the 
time and frequency domains. The efficiency of these techniques depends on the nature of the 
manoeuvres flown, the degree to which the natural modes of the vehicle motion are excited, 
and the accuracy of measured data.  

Parameter estimation techniques were chosen and applied to the task of developing a 
capability for rapidly updating simulation models with revised estimates of aerodynamic 
characteristics derived from flight data. Time and frequency domain equation-error parameter 
estimation techniques were chosen for estimating the aerodynamic properties of the T2 
aircraft. The aerodynamic estimation process adopted aligned closely with that proposed by 
Morelli and Ward in [6].  

Parameter estimation relies on prior knowledge or assumption of the form of a suitable 
mathematical representation, with the unknown model parameters then determined from 
measured data. For flight conditions associated with departure from controlled flight, the 
form of the mathematical expression of the aerodynamics may be non-linear and multi-
dimensional. The form of the expression was not known prior to analysing T2 aircraft flight 
data. Thus, aerodynamic data gathered from scale-model wind tunnel experimentation, 
represented as tables, were used to estimate the form of the expression, thereby providing 
both a structure and a priori estimates for its parameters. A multivariate orthogonal function 
model, covering the flight envelope mapped out by the aircraft during a flight test manoeuvre, 
was derived from the wind tunnel data. Reference [12] describes of the construction of such 
models for aeronautical applications. Equation 1 represents an example of a model for the 
body-axis normal force coefficient CZ derived using this process for the manoeuvre illustrated 
in Figure 2. The model is only valid over the ranges of variation of the aircraft states and 
controls associated with the manoeuvre. In this equation  is the angle of attack in degrees, e 
the elevator deflection in degrees, and q̂  the normalised pitch rate, while K0...K3 are the 
respective parameters of the model with K0 representing a bias parameter. The aircraft states 
and controls were absolute quantities, as opposed to changes around a trim condition. 
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 0 1 2 3Z e ˆC K K K K q      (1) 

Parameter Estimate 95% Confidence Interval 

K0 -3.312E-02 [-3.300E-02, -2.900E-02] 

K1 -8.446E-02 [-8.446E-02, -8.446E-02] 

K2 -8.277E-03 [-8.277E-03, -8.277E-03] 

K3 -29.186 [-29.186, -29.186]

The resulting model, together with its parameters acting as a priori estimates, was refined 
using flight data by firstly applying real-time frequency domain equation-error parameter 
estimation to estimate the model parameters [3,4,12], and then time domain equation-error 
parameter estimation to estimate the bias term. With reference to the normal force coefficient 
example, the model parameter estimates for the refined model were: 

Parameter Estimate 95% Confidence Interval 

K0 -1.755E-01 [-1.790E-01, -1.720E-01] 

K1 -6.394E-02 [-6.394E-02, -6.394E-02] 

K2 -6.329E-03 [-8.0E-3, -5.0E-3] 

K3 -18.152 [-18.233, -18.071] 

Figure 2 presents the results obtained from applying this process for estimating the normal 
force coefficient CZ from a flight test manoeuvre. Figure 2a presents the elevator control 
input for the manoeuvre together with the measured angle of attack. Figure 2b presents the 
normal force coefficient computed from accelerations measured during the manoeuvre as 
well as the corresponding coefficient extracted from wind tunnel data using flight data for the 
aircraft states and controls. Figure 2c presents the flight-derived normal force coefficient 
overlayed with the coefficient values computed from the identified model showing an 
improved match compared to the wind tunnel data. 

Figure 3 presents the data with respect to the flight envelope region mapped out during the 
manoeuvre. Figure 3a presents the normal force coefficient computed from flight 
measurements together with the relevant wind tunnel data. The wind tunnel data exhibit a 
trend that differs from the flight data. Figure 3b presents the flight data and identified model 
with the trend of the identified model aligning closer to the flight data. 

The parameter estimation process produced mathematical expressions for the aerodynamic 
quantities closely matching the characteristics exhibited by the flight data. Furthermore, the 
process could be automated, including implementation in DAVE-ML, making it ideal for 
rapidly updating aircraft simulation models. 

Aerodynamic Model Framework 

Updating an aircraft simulation model by merging flight-derived aerodynamic data with other 
data sources can be time consuming and reliant on engineering judgement. A goal of this 
activity is to ensure that the final data, whilst representing the vehicle characteristics, form a 
continuum between neighbouring data spaces. Discontinuities in the data cause the simulated 
behaviour of the vehicle to respond in an unnatural fashion to control excitations, and 
produce unrealistic motions and cues to pilots and/or auto-pilot systems. 



AIAC14 Fourteenth Australian International Aerospace Congress 
 

14th Australian Aeronautical Conference 
(AIAC14-AERO) 

 

 

-6

-4

-2

0

2

4

6

8

10

0 2 4 6 8 10 12

Angle of Attack (deg)

Elevator Deflection (deg)

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0 2 4 6 8 10 12

CZ Flight

CZ Wind Tunnel

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0 2 4 6 8 10 12

Time (s)

CZ Flight

CZ Estimated

 
Figure 2: Estimation of the normal force coefficient CZ. 

 

 
 

Figure 3: Normal force coefficient CZ wind tunnel and estimated representations. 

A cause for these discontinuities results from the use of local mathematical models of the 
vehicle aerodynamics describing a data-space about an operating point (cf. Equation 1), and 
assuming the model is applicable over a wide region about that operating point. This 
assumption may be acceptable for aircraft operating at low incident angles, indicative of 
cruise flight conditions and linear aerodynamic dependencies. However, as incident angles 
increase, such as approaching stall, the aerodynamic characteristics exhibit non-linear trends. 
A linear model rapidly becomes unrepresentative as the flight condition deviates from the 
nominal operating point. It is therefore necessary to constrain the size of each data-space to 
minimise the discontinuities. 

One solution is to define a fine grid of operating points and associated linear models where 
non-linear trends exist; however, this requires more flight data in order to represent the non-
linear trend to an acceptable degree of accuracy.  An alternative solution is to apply higher 

(a) 

(c) 

(b) 

(a) (b) 
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order mathematical representations. This requires more complex flight test manoeuvres to be 
flown so sufficiently rich data may be gathered permitting the identification of the 
contributions from higher order terms. The blending of data from sparser neighbouring data-
spaces offers a potentially simpler solution, and if applied appropriately results in data that, in 
effect, corresponds to a higher order mathematical representation. 

A technique for automating the process of incorporating new data was required for data 
blending to be applied to the task of rapidly updating aircraft simulation models. The 
approach described herein reformulated the aircraft model in terms of a baseline model, such 
as one derived from wind tunnel experiments, and a correction to the baseline model derived 
from aerodynamic parameter estimation of flight data; for example, the normal force 
aerodynamic coefficient CZ had the form: 

 ZbaselineZZ CCC   (2) 

This form conveniently avoided structural differences in the underlying models for the 
baseline and the correction. In addition, the data uncertainty for the baseline remained 
unchanged, while that for the correction resulted from parameter estimation. 

The correction was computed by identifying a model of the difference between the 
coefficient computed from the flight-data derived model, CZ Estimated - Figure 2c, and the 
coefficient computed from wind tunnel data using flight data for aircraft states and controls, 
CZ Wind Tunnel - Figure 2b. The model structure identified previously from wind tunnel 
data was used in conjunction with equation-error parameter estimation to estimate the 
parameters of the correction model. A priori information was computed by differencing the 
parameter estimates of the flight-data model and wind tunnel based orthogonal function 
model. The following represents the correction computed for the case presented in Figure 2: 

 qKKKKC eZ ˆ3210    (3) 

Parameter Estimate 95% Confidence Interval 

0K   -1.346E-01 [-1.380E-01, -1.310E-01] 

1K   2.049E-02 [2.049E-02, 2.049E-02] 

2K   1.440E-03 [0.0, 2.880E-3] 

3K   8.399 [8.316, 8.482] 

This process was able to be automated and applied to the task of rapid simulation model 
updating. DAVE-ML, with its ability to mix tabular data and equations, provided an ideal 
framework for applying aircraft model changes using the form defined by Equations 2 and 3. 
The corrections computed for the T2 aircraft were recorded using the MathML equation 
syntax. Blending was applied to the correction component for adjacent data-spaces ensuring 
data continuity. 

Data Blending 

The algorithm developed for blending the correction components of the aerodynamic data 
was based on the principle that neighbouring data-spaces overlapped, and therefore, multiple 
estimates of the aerodynamic quantity were available. The blended value was computed from 
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a weighted sum of estimates derived for each data-space, as described with the assistance of 
the example shown in Figure 4. 

r1 r2r

I

 f 1

 f 2

 
r1 r2

Blended Values

 

 
Figure 4: Blending data from overlapping data spaces 

Figure 4a presents an example non-linear aerodynamic coefficient, shown as a solid blue line. 
Linear models, shown as dashed lines, were identified for the coefficient about the operating 
points r1 and r2 respectively. Each operating point was a function of all its dependencies, 
including the aircraft states and control deflections. For flight data, these operating points 
represented the trim point associated with a manoeuvre. As illustrated, neither model 
correctly predicted the coefficient trend away from their respective operating points. 

An operating point r, for which the aerodynamic coefficient was to be evaluated, was located 
between the respective reference operating points. For this example three estimates of the 
coefficient were computed at r, being: I a linear interpolation computed from the operating 
point values; f1 a value computed from the first linear model, and f2 a value computed from 
the second linear model. Averaging I with f1 and f2 respectively gave two new estimates of 
the coefficient: 

 
2

;
2

2
2

1
1

fI
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
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
  (4) 

The blended coefficient value was a weighted sum of these averages, as shown in Equation 5. 
The weightings were defined so as to maximise the influence of the averaged value from each 
model near their respective operating points and wash out the influence of the alternative 
model. They were computed as a linear proportion of the region described by the operating 
points r, r1 and r2: 
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
  



 (5) 

Figure 4b illustrates the result of applying this algorithm for blending data from two 
overlapping linear models of a coefficient represented by a polynomial function, with the 
blended data shown as black dots. The blended data compares well with the expected trend. 

(a) (b) 
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However, the ability of the blending algorithm to estimate the coefficient trend degrades 
when the trend exhibits an inflection between the respective model operating points. Further 
study is required examine the behaviour of the algorithm where such trends exist, and to 
explore the effect of model operating point grid sizing. The blending algorithm may be used 
to blend data from non-linear local mathematical models. Furthermore, it may be extended to 
high numbers of overlapping regions. 

Since the operating points were defined as functions of all their dependencies concurrently it 
was unnecessary to blend data for each dependency separately. For example, it was 
unnecessary to blend data for the normal force coefficient as a function of angle of attack, 
and separately blend data for its variation with elevator control deflection. Another advantage 
was that it could be applied either when constructing aerodynamic datasets for a simulation 
model or while executing the simulation model as the flight condition changed and 
aerodynamic data were sourced from datasets. This later approach was applied to the task of 
rapidly updating the simulation model of the T2 aircraft. 
 

Conclusions 

A procedure for the rapid updating of aircraft simulation models based on flight data has been 
presented in this paper. The application of optimized multi-axis orthogonal multi-sine control 
sweeps and rapid aerodynamic parameter estimation techniques offers the potential to 
improve the efficiency of analysing flight data for computing corrections to existing aircraft 
simulation models. The blending of data for neighbouring data-spaces should ensure the 
aircraft aerodynamic characteristics are continuous even when local linearised models are 
employed to represent the trends. The Flight Dynamics Model Exchange Standard, and the 
Dynamic Aerospace Vehicle Exchange Markup Language, provides a framework for 
encoding changes to the simulation model, and applying these changes during execution of 
the simulation. Automating these processes offers a means to increase the efficiency of 
aircraft simulation model updating. Improving the timeliness and efficiency of envelope 
expansion flight testing, revision of control system properties, and the development of high-
fidelity simulators used to train pilots whilst flying at unusual flight conditions, may also be 
possible through the application of this capability. 

Further analysis of data from the Generic Transport Model flight test programme, together 
with data from other aircraft flight tests, will permit refinement of the techniques presented, 
the maturing of the application performing these tasks, as well as quantifying the potential 
improvements for updating aircraft simulation models. 
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